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Consider a two-dimensional domain containing a medium with unit electrical con-
ductivity and one or more non-conducting objects. The problem considered here is
that of identifying shape and position of the objects on the sole basis of measurements
on the external boundary of the domain. An iterative technique is presented in which
a sequence of solutions of the direct problem is generated by a boundary element
method on the basis of assumed positions and shapes of the objects. The key new
aspect of the approach is that the boundary of each object is represented in terms of
Fourier coefficients rather than a point-wise discretization. These Fourier coefficients
generate the fundamental “shapes” mentioned in the title in terms of which the object
shape is decomposed. The iterative procedure consists in the successive updating of
the Fourier coefficients at every step by means of the Levenberg—Marquardt algo-
rithm. It is shown that the Fourier decomposition—which, essentially, amounts to a
form of image compression—enables the algorithm to image the embedded objects
with unprecedented accuracy and clarity. In a separate paper, the method has also
been extended to three dimensions with equally good resul¢s.e99 Academic Press

Key Wordselectrical impedance tomography; inverse problems; image compres-
sion.

1. INTRODUCTION

The general problem of electricalimpedance tomography consists in the reconstruct
an unknown impedance distribution in a spatial region on the basis of measurements
boundary. The technique, originally developed for biomedical and geological applicati
uses an array of electrodes placed on the boundary of the domain of interest (see
Refs. [1, 2] for recent reviews). A sequence of prescribed voltages (or currents) is ap
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to these electrodes, and the resulting currents (or voltages) are measured. The probler
arises in this way falls in the category of so-called inverse problems as the solution soug
not the calculation of currents (or voltages) given voltages (or currents) and the parame
of the domain—as in the direct problem—but the characterization of the domain itself. |
well known that problems of this type are ill posed so that small amounts of measurem
noise are sufficient to render a faithful resolution impossible. It is therefore essential
stabilize the solution against the instability resulting from noisy data.

In the present paper we address a special class of problems of this type, in which
region of interest is two-dimensional and the unknown electrical conductivity has a const
value of unity except in the interior of one or more objects where it vanishes. We consi
measurements at very low frequency so that the impedance is purely real and reduces
resistivity. In Ref. [3] some encouraging preliminary results in which the present methoc
extended to three dimensions were shown.

Situations of the type we study may arise for example in two-phase flow, where long bl
blesrise intubes inthe so-called slug flow regime, the detection of buried cables, the ima
of bones or vessels in limbs, of lungs in the chest, non-destructive evaluation, and othe

In general, the approaches developed to date to determine an unknown impedance c
bution fall into two classes. One is the so-called back-projection method, which is basic:
an adaptation of the technique developed for medical CAT-scans. Barber and Brown [
were the first to produce the image of a human forearm using this method, although
sharpness of the image was limited. Santosa and Vogelius [6] later improved the techn
by using the conjugate residual method. Guaeti@al. [7] also used the back-projection
method in their study and gave an experimental demonstration in a three-dimensional
So far, the back-projection method has been applied only to situations in which the conc
tivity contrast is small. It is not clear whether it can be extended to the problem conside
here where, on the contrary, it is large.

The other approach, called “model based,” consists in the generation of a sequenc
solutions of the direct, or forward, problem, in which the currents (or voltages) predict
on the basis of an assumed impedance distribution are compared with those measure
each step the assumed impedance distribution is refined in such a way as to decrea:s
mismatch between the forward solution and measurement (see, e.g., Refs.[1, 2, 8-11]).
is the path that we follow in the present paper. In our implementation we use the bounc
integral method for the forward problem (see, e.g., Refs. [12, 13]), and the Levenbe
Marquardt algorithm (see, e.g., Ref. [14]) for the inverse problem. The key new feature t
we introduce—and that results in a remarkable improvement over existing methods-
the description of the boundary of the objects in terms of a Fourier series, rather the
point-wise discretization. In this way, we are plagued far less than previous investigat
by the instability of the solution with respect to measurement noise.

2. MATHEMATICAL MODEL

We consider a medium with uniform electric conductivity occupying a two-dimension
plane regior2 bounded externally by a circte and internally by one or more curvés
with j =1, 2, ..., m. The electrical conductivity vanishes inside the internal boundarie
The objective of the tomographic reconstruction is to deduce the shape of the intel
boundaries from measurements on the external boundary of
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FIG. 1. Computational domain with 3 non-conducting objects. The inset shows the boundary with gaps
electrodes.

This external boundary consists of a number of equal, evenly spaced, perfectly condu
electrodesy separated by perfectly insulating gaf@sas shown in Fig. 1. In practice, of
course, there will be some contact resistance that would, however, be highly deper
on the particular experimental set-up and conditions [15, 16]. Since this effect cannc
meaningfully modeled in general terms, we do not attempt to include it although it may
practice, have quantitatively significant effects.

In principle the data needed for the tomographic image reconstruction can be acq
either by imposing a current pattern on the electrodes and measuring the resulting vol
or, reciprocally, by imposing voltages and measuring currents. The latter alternative ¢
to a somewhat simpler modeling as, in practice, electrodes consist of highly condu
material throughout which the voltage can be assumed to be spatially uniform. Wher
total current into an electrode is specified, on the other hand, the current density is
uniform but needs to be determined from the solution of a boundary value problem.
this reason, for the sake of simplicity, we consider here a situation in which voltages
prescribed and currents measured.

As in other model-based algorithms, our method consists of the solution of a sequi
of forward problems in which a better and better approximation to the internal bounda
X, is progressively constructed.
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The mathematical formulation of the forward problem is the following. The electri
potentialV inside the regiom2 satisfies Laplace’s equation

V2V =0, 1)

subject to the condition of an imposed voltageon thekth electrodeg, and of zero current
in thelth gapg,. Mathematically, this latter condition is expressed by

n-vv =0 overg. (2)

The same condition applies at the inner boundadigsHere and in the following we set
the electrical conductivity of the material to 1 for convenience.

The normal current density- VV on thekth electrode and the total currelptthrough
it are related by

|k:/ n- vV d&. 3)
&

A comparison of these calculated currents with the measured ones gives a measure
accuracy of the reconstruction and a means to refine it.

The ill-posed nature of tomographic reconstruction manifests itself in an ill-conditionir
of the matrix of the system the solution of which gives the parameters defining the image
the past the difficulty due to this ill-conditioning has been mitigated by the use of techniq
such as the singular value decomposition, but at the expense of a significant sacrific
image quality (see, e.g., Ref. [17]). The degree of ill-conditioning grows as the number
unknowns used to parameterize the image is increased for a given number of measuren

This remark suggests that a desirable feature of an inversion method would be the use
description of the object in terms of a number of parameters as small as possible. From
perspective it is clear that a point-wise description of the object boundaries, such as the
used, for example, by Murai and Kagawa [18], is rather inefficient. For example, 4 poil
(i.e., 8 parameters) can only approximate a quadrilateral. A more complex shape wc
require a significantly larger number of parameters even for a very coarse representati

We take a different approach, namely we try to reduce the number of parameters 1
essary for an acceptable approximation of the image by superposing fundamental sh:
each one characterized by a small number of parameters, whence the denomination “s
decomposition” of the present technique. One may interpret this idea as attempting tc
construct a compressed version of the image of the original object. Such an approac
particularly valuable when some general information as to the general shape of the obj
is available a priori. For example, circles can be described in terms of 3 parameters ¢
the position of the center, and the radius.

While there is of course a great latitude in the choice of the fundamental shapes, her:
use, for each object, a Fourier decomposition of the type

1 o0
X — Xc| = on+Z(Akcosk9+ By sink®). 4)
2 k=2

Herexc = (Xc, Yc) is the centroid of the object defined so that the tkeml is not present
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in the expansion (4), i.e.,

2 2
/ |X — Xc|sinf do = 0, / |X — Xc|cosf db = 0. (5)
0 0

For a smooth contour, the series (4) converges faster than any pow¢naintl one
may therefore expect that a small number of terms would be sufficient for an accept
reconstruction.

The angled is measured from an arbitrary direction, that we take axthris of a plane
Cartesian coordinate system. In practice, of course, the series (4) is truncated to a
number of mode&nax= N, after which the problem of image reconstruction is reduced
the calculation of the ® — 1 Fourier coefficientdg, Ax, Bk, k=2, 3, ..., N, and of the
two coordinateXc, yc) of the object centroid. The total number of unknowns is therefo
2N + 1 per object; in a send¢ can thus be thought of as a regularization parameter for t
present method.

Clearly, the expansion (4) is only valid for shapes such that all rays issuingxgom
intersect the boundary of the object at one point only. This restriction can be alleviate
several ways. For example, one might use simultaneously more than one Fourier expa
centered at different points and suitably matched. Another possibility might be the us
a normalized arc length in place of the polar amgl&ince we have not explored any of
these alternatives yet, in this paper we shall only consider shapes that can be represel
the form (4).

3. NUMERICAL ASPECTS

It will be recalled that in the class of problems considered here the objects to be ime
have zero conductivity. This circumstance can be exploited to improve the tomogra
reconstruction. In the first place, one can use a boundary integral method for the calcul
of V according to (see, e.g., Refs. [12, 13])

1 .0 , , Vv ,
V(x)_Zn/<V(x)awlog|x—x|—Iog|x—x|an/)dl, (6)
where the integral is over the entire boundary of the problem, i.e., the electrodes,
insulating gaps, and the interior object(s); the factor 2 in the denominator is becaus
field pointx is on the boundary. This possibility is particularly advantageous here in vi
of the fact that only the normal gradient ¥f on the boundary is required in the presen
problem for the evaluation of (3). With a finite-element approach, the entire domain wc
have to be discretized and resolution and quality of the reconstructed image would strc
depend on the particular discretization used, particularly in the neighborhood of the obji

In the numerical examples discussed below we assume that the electrode-to-gar
(or better, in two dimensions, arc length) ratio is 10 to 1 (Fig. 1). The number of no
used for the electrodes and the gaps was progressively increased until the values
currents stabilized to within 0.02%. Typically 29 and 17 nodes for each electrode and
respectively, were required. The nodes were denser near the edge of the electrodes to
resolve the square-root singularity of the current density there; 60 nodes were used ft
boundary of the interior object, which tests proved to be sufficient for good accuracy. Tt
nodes were equally spaced in the angular direction. In the implementation of the boun
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integral method we use cubic splines to describe the boundaries and a linear interpolatio
V over each boundary element. Gaussian integration was used with 6 nodes on each ele

We made no attempt to optimize the boundary integral calculation. For instance, a
rameterization ol that were to explicitly account for the square-root singularity at th
electrode edges could reduce the number of nodes without sacrificing accuracy. On
other hand, it is likely that such an approach would have to be modified for example
the presence of a model for the contact resistance. We feel that this and other aspect:
similar nature are peripheral to the main point of this paper which is the introduction of t
shape decomposition idea.

For the reasons discussed in the next section, the reconstruction procedure begins
a search for the circle(s) that best approximates the target. For each estimate of the te
the % N(N — 1) currents that are available witd electrodes are calculated from (3) and
compared with the “measured” currents (i.e., the numerically generate pseudo-data).
Levenberg—Marquardt algorithm [14] is used to progressively refine the parameter vall
This part of the procedure is very rapid as it only involves three parameters and is arre:
when the relative difference between current values evaluated in two successive iteral
falls below 104. When this criterion is satisfied, a search for all the parameters included
the final search is started, but with a lower spatial discretization (11 nodes on the electrc
and 3 in the gaps). This procedure is arrested when a convergence criteriort i .
Finally, a full search with the same number of nodes used for the generation of the psel
data is carried out and terminated as before with a convergence criterion‘sfl10°. In
general it was found that, at the termination of the iteration procedure, the residual wa
the order of 10%-10-° times the initial value.

The computational time for the examplesthat follow on an SGI Octane workstation var
from a few minutes to several hours in the cases with the largest number (24) of electro

4. RESULTS

In order to test the proposed method, in this paper we use “pseudo-data” generated
the solution of the forward problem with a given object shape. The Fourier coefficier
used to parameterize the object are the “target” values that the inversion algorithm n
reconstruct.

It must be recognized that, although this is a common procedure, the data are not “ex
and, in a sense, the numerical error introduces an uncontrolled regularization. Thus, in |
ciple, one might even worry that an apparent ability to reconstruct the object might be for
itous. In this connection we may note that, first, the pseudo-data that we use are essen
converged and, therefore, numerically indistinguishable from a hypothetical exact soluti
second, the present method seems to work well even in the presence of noise (see b
and, third, satisfactory results are consistently recovered varying the number of Fourier c
ponents, electrodes, and objects. Hence we believe that the results that we describe fu
a sufficiently stringent test of the ability of the present shape decomposition algorithm.

We have tested the method both with objects that can be represented exactly by
superposition of a finite number of Fourier modes, which wefealrier objects and with
objects for which any finite Fourier representation is only an approximation of the real sha
non-Fourier objectsAlthough perhaps not very realistic, Fourier objects are useful as the
exact reconstruction by the algorithm is, in principle, possible. Any error can therefore
imputed to the method itself rather than to the accuracy with which a truncated Foul
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series represents the actual shape. Thus Fourier objects enable us to get a good asse
of the properties of the algorithm, e.g., its sensitivity to factors such as shape comple
number of electrodes used, and object location.

4.1. Fourier Objects

For Fourier objects, one can envisage situations where the number of Fourier moc
known a priori or not. The former case is obviously simpler and we begin by one s
example.

We consider an object generated with 8 Fourier modes, i.e., a total of 17 parameters,
Xc = Yc = 0. The inversion algorithm based on an 18-electrode system, searched for al
17 parameters at the same time and the starting guess was a circle of radius 0.3 at the
of the domain. The solid line in Fig. 2 shows the object and the dashed line the image re
structed by the inversion algorithm when the convergence criterion was satisfied afte
steps. Table | gives the values of the exact Fourier amplitudes, the initial guess, and the
converged values (column 4). It can be seen that the algorithm performed well in this ¢

It was found that when the procedure was applied to the same object displaced fror
center of the domain, the accuracy of the reconstruction was affected by the positic
the initial circle. A considerable improvement of the method’s performance was achie
by adopting a different, more robust strategy that might be termed “deferred searct
preliminary search is conducted for the center and radius of an approximating circle
once these parameters have been estimated, the search for the complete paramete
turned on as described at the end of the previous section. Numerically, this procedur:
be interpreted as a pre-conditioning of the iteration operator. With this strategy, exce
results were obtained irrespective of the location of the initial circle as shown in colur
5 and 6 of Table | that correspond to the same object of Fig. 2 centered&t, (0) and
(—0.39, 0), respectively. A total of 26 and 29 iterations were required, respectively, star
from the domain’s center; about 5 iterations were necessary to find the approximating ci
This same strategy was used for all the examples that follow.

1.0

0.5

0.0

-71.0 1 ! !
-1.0 -0.5 0.0 0.5 1.0

FIG. 2. Reconstruction on the basis of an 18-electrode system (dashed line) of an object generated v
Fourier modes (solid line). See Table I, column 4, for numerical values.



82 HAN AND PROSPERETTI

TABLE |
Exact Values, Initial Guesses, and Computed Results for the Object of Fig. 2 Centered
at (0., 0.) (Column 4), 0.2, 0) (Column 5), and (0.39, 0.) (Last Column)

Calculated value Calculated value Calculated value
Parameter Exact value Initial guess —Q.0015, 0.0027) £0.1997, 0.0007) +£0.3887, 0.0004)

Ao 0.3200 0.3000 0.3269 0.3262 0.3249
A, 0.0400 0.0 0.0349 0.0365 0.0381
B, 0.0 0.0 —0.0038 —0.0033 —0.0030

A; 0.0 0.0 0.0031 0.0022 0.0015
Bs 0.0400 0.0 0.0330 0.0335 0.0343
Ay 0.0400 0.0 0.0421 0.0412 0.0408
B, 0.0 0.0 —0.0030 —0.0043 —0.0041

As 0.0400 0.0 0.0420 0.0410 0.0406
Bs 0.0400 0.0 0.0329 0.0353 0.0365
As 0.0 0.0 0.0080 0.0056 0.0029
Bs 0.0 0.0 0.0014 0.0010 0.0013
A; 0.0400 0.0 0.0382 0.0366 0.0366
B, 0.0 0.0 0.0032 0.0034 0.0036
Ag 0.0400 0.0 0.0286 0.0315 0.0341
Bsg 0.0 0.0 0.0009 0.0038 0.0030

Note.The calculated coordinates of the object center are shown at the top of the last 3 columns.

We now consider, again with 18 electrodes, two cases in which the number of parame
searched is not the same as that used to generate the object. In the first example, the n
of parameters searched is smaller. In this case, one may expect that the higher-frequ
components of the true shape act as noise contaminating the data presented to the inve
algorithm. Thefirst panel of Fig. 3 shows an object centered at the origin and generated w
Fourier components (solid line) and its reconstructed image with only 5 Fourier compone
after 42 iterations (dashed line). The reconstructed image is clearly an approximation of
true image. The values of the reconstructed Fourier parameters for this case are shov
the fourth column of Table Il. From these numerical results, we see that the approxima
is acceptable in spite of the unavoidable error.

For the same object, we next allowed 7 Fourier modes in the image, i.e., one m
than those necessary for an exact reconstruction. The results of the reconstruction aft
iterations are shown in the second panel of Fig. 3 and the corresponding numerical va
are given in the last column of Table Il. The inversion algorithm was evidently success
in this case.

These results illustrate the ability of the inversion algorithm to reconstruct Fourier obje
even when there are uncertainties in the number of modes used to generate them.

4.2. Non-Fourier Objects

The next set of trials involved image reconstruction of objects with shapes that canno
described exactly by a small number of Fourier components. To present a challenge tc
reconstruction algorithm we chose objects with fairly sharp corners. Even though, be
generated with cubic splines, these figures do not possess actual sharp corners that \
resultin ak—2 decay of the Fourier coefficients, traces of the slow convergence of the Fout
representation may still be expected to remain. This circumstance renders a relatively |
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FIG. 3. An object generated with 6 Fourier modes (solid lines) is reconstructed (dashed lines) searchin
5 modes (upper panel) and 7 modes (lower panel) on the basis of an 18-electrode system. For numerical
see Table Il.

number of modes necessary for an accurate reconstruction and, therefore, such o
represent a more stringent test for the inversion than those considered previously.

The first example is a pentagon-shaped object centered at (0.259, 0.259). Figur:
and 4b show the results of two reconstruction attempts based on 5 (12 iterations,
panel) and 6 (14 iterations, second panel) modes, respectively, in both cases on the
of data corresponding to 16 electrodes. The true object is shown by the solid line
the final converged images by dashed lines. There is little difference between the
reconstructions.

Next a rotated.-shape was reconstructed searching for 5 and 6 Fourier modes, in |
cases with the same convergence criteria. Since this case is a more difficult one, we
simulated data with a 24-electrode system. The converged images, obtained after 1!
39 iterations, respectively, are shown in Fig. 5. Both searches captured the essence
object features fairly successfully, but with varying degree of distortion. We also trie
Fourier modes, but without any significant improvement in the image quality.
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TABLE Il
Exact Values, Initial Guess, and Computed Results for the Object of Fig. 3 Constructed
with 6 Fourier Modes

Exact value Initial guess Calculated value Calculated value
Parameter 0,0) 0,0) —0.0238, 0.0102) +0.0002,—0.0028)

Ao 0.3000 0.3000 0.2966 0.3003
A, 0.0600 0.0 0.0761 0.0613
B, 0.0 0.0 —0.0122 —0.0020

A; 0.0 0.0 —0.0153 —0.0002

Bs 0.0600 0.0 0.0337 0.0592
A 0.0600 0.0 0.1001 0.0575
B, 0.0 0.0 0.0033 0.0007
As 0.0600 0.0 0.0539 0.0614
Bs 0.0 0.0 —0.0056 0.0003

As 0.0600 0.0 0.0 0.0607
Bs 0.0 0.0 0.0 0.0015
A; 0.0 0.0 0.0 0.0001
B; 0.0 0.0 0.0 0.0046

Note.The calculated coefficients with a 5- and a 7-mode reconstruction are shown in the 2 last columns. S
5 modes are insufficient for an exact reconstruction of the object, the corresponding results show an apprec
error.

4.3. Noisy Data

In the examples studied so far the objects were reconstructed from the simulated da
the forward solution algorithm without any added noise. In view of the ill-conditioning ¢
the inverse problem, it is crucial to test whether the inversion algorithm is robust enot
to tolerate noise in the data. It is also interesting to explore whether the performance of
method in the presence of noise can be improved by increasing the number of electrc
Another parameter that affects the quality of the reconstruction is the number of Fou
modes kept in the search. Again, it is interesting to explore the robustness of the methc
this parameter is varied in the presence of noise.

To test the stability of the algorithm with respect to errors in the data we genera
artificial “noise” by introducing a random perturbation. As before, the data are simulat
by solving the forward problem numerically and the perturbation is introduced accordi
to the rule

PP=P+er|P|, (7

wherer is a random number (different for each componer®Ppfvith —0.5<r <0.5 and

€ is a parameter quantifying the noise level. The elements of the vieet@ the simulated
electrode current data, the element$Pofire the corresponding “noisy” data, af@| is
the maximum norm. We consider= 1% and 2%, which is of the order usually considerec
in the literature (see, e.g., Ref. [19]).

The first test was the reconstruction of the shape shown in Fig. 6, centered at (0, 0)
generated with 5 Fourier modes with various levels of noise. An 8-electrode system \
simulated. The reconstructed images after contamination of the data by 1% and 2% n
levels are shownin Figs. 6a (15 iterations) and 6b (18 iterations). The reconstruction rem
acceptable with a 2% noise level. We found that if the noise level is raised to 5%, the im.
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FIG. 4. A pentagon-shaped object reconstructed searching for 5 Fourier modes (upper panel) and 6 n
(lower panel) on the basis of a 16-electrode system.

quality is greatly degraded with the boundary notching inward toward the centroid as
higher frequency components grow large.

Similar results were found for the reconstruction of other types of images from nc
boundary measurement data. Figure 7 shows the reconstruction of a square object c
0.5 centered at (0.25, 0.25) by a 16-electrode system at zero noise level (13 iteration:
panel) and at 1% and 2% noise level (14 and 19 iterations, respectively). If the noise |
is further increased, the higher frequency components in the image grow and event
dominate. Four Fourier modes were searched for in this case; the truncation of the ¢
shape to this small number of coefficients is evidently a form of regularization as mentio
before in Section 2.

Figure 8 shows the image of the square reconstructed with 4 (35 iterations), 6 (51
ations), 7 (64 iterations), and 9 Fourier modes (57 iterations) with a noise level of 2%
the synthetic data generated by a 16-electrode system. As can be seen, the reconst
becomes more and more unstable as the number of modes is increased.
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FIG. 5. An L-shaped object reconstructed searching for 5 (upper panel) and 6 (lower panel) Fourier mc
with data simulated by a 24-electrode system.

The instability caused by noise in the data or a large number of parameters may
alleviated by utilizing alarger number of electrodes, i.e., by increasing the ratio of the num
of measurements to that of unknowns. The number of distinct measurements obtainable
N electrodes is obviously the number of distinct pairs into which they can be grouped, i
%N (N — 1). Therefore, the number of distinct data increases quadratically with the numi
of electrodes although, beyond a certain point, the difference between the data prodi
by neighboring electrode pairs becomes too small to mitigate the ill-conditioning of t
problem. Nevertheless we find that increasing the number of electrodes does help with in
reconstruction in the presence of noise. Some examples are shown in Fig. 9 where the re
of attempts at reconstruction of the square used before with 12, 16, and 24 electrode:
shown in the presence of 1% and 2% noise levels. For the 1% noise level (Figs. 9a to 9¢
number of iterations necessary for convergence was 20, 16, and 15, respectively. For :
noise level, convergence was not achieved for the 12- and 16-electrode systems (Figs
9e), while it occurred after 16 iterations with 24 electrodes (Fig. 9f). In spite of some deg
of degradation, the image produced by the 16-electrode system captured the key fea
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FIG.6. Attempted reconstructions (dashed lines) of an object generated with 5 Fourier modes in the pre:
of 1% (top panel), and 2% (lower panel) noise.

of the object successfully at the 1% noise level. At 2%, however, the images reconstrt
with fewer electrodes were strongly affected by the noise. Although in our experience
larger number of electrodes has consistently yielded better results, this conclusion is &
on observations of a limited number of tests. Both theoretical and numerical investigat
are needed to gain additional insight into this issue.

4.4, Several Objects

We now present results of a preliminary test of the performance of the inversion algori
when more than one object is present.

The first case we consider has two Fourier objects. Figure 10 shows a sequence of
mediate images during the reconstruction process for non-noisy synthetic data generat
an 8-electrode system. In this case, the number of objects to be reconstructed was pres
at the beginning of the inversion. Each object was generated with 3 Fourier modes,
total number of 14 unknowns. This information about the number of parameters for €
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FIG. 7. Attempted reconstruction of a square with (a) no noise; (b) 1% noise; (c) 2% noise, all with dz
generated by a 12-electrode system searching for 4 Fourier modes.
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FIG. 8. Attempted reconstruction of the square of the previous figure in the presence of a 2% noise |
searching for (a) 4 Fourier modes; (b) 6 modes; (c) 7 modes; (d) 9 modes; pseudo-data generated by a 16-el
system.

object was also specified at the beginning of the calculation. After 13 iterations the inv
solution converged to the true image as shown in the last panel of Fig. 10.

In general, the number of objects present in the domain may be one of the unknowns ¢
problem. As an example of such a situation we consider the following test conducted witl
the deferred search strategy. The first panel of Fig. 11 shows the same square-shaped
used before together with an initial guess constituted by two circles. We expected that i
of the images converged to the true object, the other one would be forced to a small si
minimize the error. The data were generated from the simulation of a 24-electrode sy:
with no noise contamination and 3 Fourier modes each were allowed in the reconstrt
objects. The final panel of Fig. 11 shows the result after 50 iterations, at which point
results started fluctuating and the procedure was stopped. It is likely that this outcome
due to a loss of accuracy of the boundary integral calculation caused by the intersecti
the boundaries. Nevertheless we show this result to demonstrate the tendency of th
objects to coalesce in these conditions in an effort to reproduce the target.

The deferred search strategy suggests a simple way to prevent such coalescence of |
aries. Instead of forcing the reconstruction to converge quickly, which causes the algor
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FIG. 9. Attempted reconstruction of the square of the previous figures in the presence of a 1% noise |
(a)—(c), and a 2% noise level (d)—(f) with 12 electrodes (a), (d), 16 electrodes (b), (e), and 24 electrodes (c),
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FIG. 10. Snapshots of the convergence history of a two-object reconstruction with no noise contamina
(a) initial guess; (b) first iteration; (c) second iteration; (d) converged results after 13 iterations. Pseudo
generated by an 8-electrode system.

to try and fit the two images into a single object, one may first look just for the numi
of circles that minimizes the difference between true and inverted'dBiés forces the

inversion not to try to fit two deformed images onto a single object. After the number
objects to be reconstructed is determined in this way, the inversion can proceeded norr
A few snapshots of such a reconstruction sequence, based on a 12-electrode syste
shown in Fig. 12. This approach can be extended to the case of several objects. One\
start with a certain number of circles as the initial guess. If this number is larger than th:
the objects, one would progressively eliminate any circle whose radius becomes too s
If this does not happen, the initial number of circles should be increased until some
eliminated thus ensuring that the correct number of objects has been identified. The stz
guess of the second phase of the solution would of course exploit the calculated info
tion on the centroid location and approximate radius of each object. This knowledge o

1 Although one would expect the existence of such a minimum in many cases, it should be noted that no f
proof is available.
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FIG. 11. Attempted reconstruction of the square of Fig. 7 searching for two objects; (a) initial guess; (b) fi
iteration; (c) second iteration; (d) after 50 iterations. Pseudo-data generated by a 24-electrode system with no
contamination.

general location of the objects can be expected to help prevent the settling of the solu
into a local minimum.

5. CONCLUSIONS AND COMMENTS

This paper has introduced a new approach to image reconstruction by electricalimped
tomography. By fitting the object by means of suitable “shapes”™—as opposed to a disc
number of points—one can increase the resolution of the object to be reconstructed witl
a large increase in the number of parameters that need to be specified. As a consequ
the number of unknowns can be kept relatively small, and sensitivity to the inherent
posedness of the problem correspondingly reduced. The idea is to attempt the reconstru
of an effectively “compressed” image, i.e., one that can be approximated well with a sn
number of parameters. Alternatively, one may think of an object describable in terms
several different representations each one characterized by a number—usually infinite
“degrees of freedom.” Clearly, it is advantageous to attempt the reconstruction of the ob
in terms of the representation that, in a suitable sense, converges the fastest.
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FIG. 12. Attempted reconstruction of the square of the previous figure in terms of two circles; (a) ini
guess; (b) second iteration; (c) fourth iteration; (d) converged result after 9 iterations. Pseudo-data generate
12-electrode system with no noise contamination.

In this study we have represented the object by means of a truncated Fourier s
as it is well known that the Fourier coefficients of a smooth function converge faster t
algebraically. Clearly the essence of the idea introduced here can be implementedinav
of ways. The present study was only meant to introduce the concept and demonstre
performance in a number of examples. In conclusion, we indicate a number of point:
further research:

1. In order to start the search from an initial guess relatively close to the solutio
is useful to adopt the strategy of “deferred search”: a preliminary low-resolution sez
in terms of circles or other simple shapes is conducted to estimate the number, pos
and general size of the objects. The final search can then be based on these prelin
results with an increase in speed of convergence. This approach may be interpreted as
conditioning of the operator and alternative, more efficient strategies of this type may e

2. Asexpected, the inversion algorithm is sensitive to noise in the data. We have fc
thatimages of reasonable quality could be produced even with noisy data by increasin
number of measurements, i.e., of electrodes. Of course, this strategy has both practic:
intrinsic limits that it would be interesting to study.
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3. Another important point to be studied is the optimum resolution achievable fol
given number of data. As was shown in Fig. 9, the demand for an excessively high resolu
may result in a considerable degradation of the image.

4. The present shape decomposition approach may be extended to three-dimens
e.g., by using spherical harmonics. This appears to be another fruitful area for reseec
Some preliminary, very encouraging results have been presented in Ref. [3].

5. One element of the forward problem not included in this study is the modelir
of the contact impedance between the conductive medium and the electrodes. In a
experiments, perfect contact with the electrodes may not be an accurate assumption. K
non-zero contact impedance would affect the present results is another point to be exam

6. Shape decompositions in other than Fourier modes also need to be researched
flexibility may be of particular value when the general shape of the objects to be searc
is known. But one can also explore other orthogonal decompositions, such as Lege
polynomials [20], etc. One of the limitations of expansions such as (4) is that they can
reproduce certain classes of nearly self-intersecting shapes. In this case, one may use
than one Fourier decompositions for different parts of the boundary—and in this case ¢
up Egs. (5)—or use, in place of the anglea normalized arc length along the boundary.
This approach is not evidently restricted to Fourier decompositions, but can be used for
(orthogonal or non-orthogonal) decomposition.

7. Finally—and most critically—it is necessary to test how the features of this meth
that have been determined theoretically would stand the test of an actual experiment.

ACKNOWLEDGMENTS

A.P. gratefully acknowledges support from DOE under Grant DE-FG02-89ER14043. D.H. is grateful to OI
for allowing him time to work on this project.

REFERENCES

1. S.L.CeccioandD. L. George, Areview of electrical impedance techniques for the measurement of multipl
flows, J. Fluids Eng.118 391 (1996).

2. D. Mewes and D. Schmitz, Tomographic methods for the analysis of flow patterns in steady and trans
flows, in Two-Phase Flow Modelling and Experimentati@ulited by G. P. Celata, P. Di Marco, and R. K.
Shah (Edizioni ETS, Pisa, 1999), p. 29.

3. H. N. Qjuz and D. Han, 3-D impedance tomography of high contrast objecBpundary Elements XX
edited by A. Cassab, M. Chopra, and C. A. Brebbia (Computational Mechanics, Southhampton, 1998
361.

4. C. C.Barberand B. H. Brown, Imaging spatial distributions of resistivity using applied potential tomograp!
Electron. Lett19, 933 (1983).

5. C. C. Barber and B. H. Brown, Applied potential tomograghyhys. E17, 723 (1984).

6. F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance im&iiig, J. Appl.
Math. 50, 216 (1990).

7. R.Guardo, C. Boulay, B. Murray, and M. Bertrand, An experimental study in electrical impedance tomogray
IEEE Trans. Biomed. En@®8, 617 (1991).

8. T.J. Yorkey, J. G. Webster, and W. J. Tompkins, Comparing reconstruction methods for electrical impedz
tomography)EEE Trans. Biomed. End.1, 843 (1987).

9. F. J. Dickin, R. A. Williams, and M. S. Beck, Determination of composition and motion of multicomponel
mixtures in process vessels using electrical impedance tomography. I. Principles and process engine
applicationsChem. Eng. Sc#8, 1883 (1993).



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

SHAPE DECOMPOSITION METHOD FOR EIT 95

. D. L. George, S. L. Ceccio, J. R. Torczynski, K. A. Shollenberger, and T. J. O'Hern, Validation of electr
impedance tomography for measurement of material distribution in two-phaselfibwis Multiphase Flow

in press.

N. Reinecke and D. Mewes, Multielectrode capacitance sensors for the visualization of transient two-
flows, Exp. Thermal Fluid Scil5, 253 (1997).

M. A. Jaswon and G. T. Symrintegral Equation Methods in Potential Theory and Elastostafasademic
Press, San Diego, 1977).

C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Hi@ambridge Univ.
Press, Cambridge, UK, 1992).

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flanréaynerical Recipes in FORTRARNd ed.
(Cambridge Univ. Press, Cambridge, UK, 1992).

K. Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser, Electrode models for electric current comg
tomography)EEE Trans. Biomed. En§6, 918 (1989).

K. Paulson, W. Breckon, and M. Pidcock, Electrode modeling in electrical impedance tomo@iiiyg.
Appl. Math.52, 1012 (1992).

M. Murai and Y. Kagawa, Electrical impedance computed tomography based on a finite elemenkEkdtiel,
Trans. Biomed. En@2, 177 (1985).

M. Murai and Y. Kagawa, Boundary element iterative technique for determining the interface boun
between two Laplace domains—A basic study of impedance plethysmography as an inverse pnbblem,
Numer. Methods En@3, 35 (1986).

O. C. Jones, J. T. Lin, H. Shu, L. Ovacik, and Y. He, Impedance imaging relative to binary mixtures
Liquid-Solid Flows edited by M. C. Roco, C. T. Crowe, D. D. Joseph, and E. E. Michaelides (ASM|
New York, 1994), Vol. FED-189, p. 91.

R. Duraiswami, G. L. Chahine, and K. Sarkar, Efficient 2D and 3D electrical impedance tomography u
boundary element methodshem. Eng. Scb2, 2185 (1997).



	1. INTRODUCTION
	2. MATHEMATICAL MODEL
	FIG. 1.

	3. NUMERICAL ASPECTS
	4. RESULTS
	FIG. 2.
	TABLE I
	FIG. 3.
	TABLE II
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	5. CONCLUSIONS AND COMMENTS
	ACKNOWLEDGMENTS
	REFERENCES

